Cystic Fibrosis in Children

D.B. Sanders, MD, MS
Associate Professor of Pediatrics
Riley Hospital for Children
Indiana University School of Medicine
Indianapolis, IN USA

Presenter Disclosure

D.B. Sanders, MD, MS

The following relationship(s) exists related to this presentation:

CF Foundation, Consulting and Research Funding (Institution)

Objectives

- Describe the incidence and genetics of CF
- Understand the impact of newborn screening
- Discuss the pathophysiology of CF lung disease
- Describe approaches to treating the underlying defect in CF

CF EPIDEMIOLOGY AND GENETICS

Incidence and Prevalence

- Most common fatal genetic disorder in Caucasians
 - 1 in 3,600 Caucasian births
 - 1 in 17,000 African-Americans
 - 1 in 31,000 Asian-Americans
- 30,000 people in US and 70,000 worldwide
- Carrier rate 1:30

Proportion of People with CF Reaching Adulthood

Number of Children and Adults with CF, 1987–2017

Genetics

- CF Transmembrane Conductance Regulator (CFTR) protein
 - Long arm of Chromosome 7
 - Controls the movement of salt and water
- Over 1,900 mutations
 - F508del most common

Airway hydration

NEWBORN SCREENING

Question 1

- Newborn screening for a healthy, full-term baby girl reveals
 CFTR mutations F508del and R117H
- Sweat chloride levels are 37 and 44 mmol/L, respectively

Question 1: Which of the following results would increase suspicion that this child has cystic fibrosis?

- A. Sweat test = 55 mmol/L
- B. Fecal elastase level of 395 mcg/g stool
- C. Presence of the 5T form of the poly-T sequence of intron 8
- D. Presence of the 9T form of the poly-T sequence of intron 8
- E. Sputum culture with Staphylococcus aureus

Question 1: Which of the following results would increase suspicion that this child has cystic fibrosis?

C. <u>Presence of the 5T form of the poly-T sequence of intron 8</u>

R117H and poly-T sequence

- Found in intron 8 of the CFTR gene
- Can impact CFTR function by aberrant splicing of exon 9
- 5T alleles are considered mutations
 - Decrease the efficiency of intron 8 splicing
- 7T and 9T alleles are considered polymorphic variants

R117H and poly-T predicted outcomes

One mutation:	Second mutation: R117H + ?	Predicted outcome:
CF-causing mutation, e.g., F508del	R117H + 5T	R117H will likely act as a disease-causing mutation
	R117H + 7T	R117H is unlikely to act as a disease-causing mutation. May result in male infertility
	R117H + 9T	R117H is highly unlikely to act as a disease-causing mutation. Male infertility is typically not affected

The Sweat Test

- Pilocarpine iontophoresis is the only approved method
- Ranges of Chloride Concentration
 - < 30 mM/L, normal range</p>
 - > 60 mM/L suggestive of CF
- Minimum acceptable sweat volume
 - Filter paper: 75 mg
 - Microbore tubing: 15 microliters

Question 2

- Newborn screening results come back for a healthy, full-term baby boy
- Initial immunoreactive trypsinogen (IRT) levels are in the highest 5% of IRT values obtained that day
- DNA mutation analysis reveals one copy of G551D
- Sweat test results are 35 mmol/L and 38 mmol/L at 3 weeks
- Complete gene sequencing detects a missense mutation in cis

Which of the following is the most likely diagnosis?

- A. Cystic fibrosis
- B. Cystic fibrosis transmembrane conductance regulatorrelated metabolic syndrome (CRMS)
- C. False positive NBS result
- D. CFTR-related disorder
- E. Atypical cystic fibrosis

Which of the following is the most likely diagnosis?

B. <u>Cystic fibrosis transmembrane conductance regulator-</u>related metabolic syndrome (CRMS)

CRMS/CFSPID

CFTR-Related Metabolic Syndrome (CRMS) Follow at CF Center					
SC (mmol/L)	Number of CFTR Mutations				
	Group A**	Group B or D			
< 60 ***	1	1			
< 60 ***	0	2			
40-59	1 (or 1			
Unresolved: Possible CRMS					
40-59	0	0			

Group A	Group D
"CF-Causing"	"Unknown or Uncertain Significance"
1078delT	Many missense mutations
1677delTA	
1717-1G>A	
1898+1G>A	
2184delA	
2184insA	
2789+5G>A	
3120+1G>A	
3659delC	
3849+10kbC>T	
621+1G>T	
711+1G>T	
A455E	
E822X	
F508del	
6542X	
G551D	Borowitz <i>J Pediatr</i> 20

Cystic Fibrosis: Diagnosis

MVCC: Mutation of varying clinical consequence

NPD: Nasal potential difference

ICM: Intestinal current measurement

Farrell J Pediatr 2017

Cystic Fibrosis: Diagnosis

Early diagnosis improves growth

Lung function according to mode of diagnosis

FEV₁ vs Age by Birth Cohort

Complications from Late Diagnosis

- Electrolyte abnormalities
 - Hypochloremia
 - Hyponatremia
- Growth
 - Failure to thrive
 - Hypoproteinemia
 - Kwashiorkor
- Rectal prolapse

- Vitamin deficiencies
 - E: Hemolytic anemia
 - K: Bleeding diathesis
 - Zinc: Acrodermatitis
- Hepatobiliary
 - Focal biliary cirrhosis
 - Cirrhosis occurs in ~5% of patients
- Portal hypertension
 - Hypersplenism and esophageal varices
 - Bleeding can be life-threatening

CF LUNG DISEASE

Etiology of CF lung disease

- Lungs appear grossly normal at birth
- Begins with small airways

- Decreased mucociliary clearance
 - Dehydration of mucus
 - Altered mucins

Normal

Cystic Fibrosis

Courtesy of Jim Chmiel

Courtesy of Jim Chmiel

Detecting Lung Disease

- Functional
 - Spirometry
 - Multiple breath washout (MBW)
 - MRI scan (perfusion and ventilation, active inflammation)
- Structural
 - Chest radiograph
 - CT scan
 - MRI Scan

CT imaging of CF lungs

10 year old, $FEV_1 = 86\%$ predicted

13 year old, $FEV_1 = 96\%$ predicted

De Jong Eur Respir J 2004

Multiple breath washout

- Measure of ventilation inhomogeneity
- Lung clearance index = ventilation required to clear inert gas
- ^LCI indicates inefficient gas mixing
- Sensitive to changes in lung disease
- Tracks with later lung function
- Several limitations

MBW Read out

MBW can be used to detect early lung disease

Inflammation in CF

- Occurs early in life
- Excessive relative to the burden of bacteria
- Persistent even in the absence of detectable organisms
- Contributes to lung damage
- Neutrophils release
 - Oxidants and proteases → damage the lung
 - DNA → increases secretion viscoelasticity
- May be directly linked to the basic defect in CF

Inflammation in CF (Continued)

- Lung inflammation leads to bronchiectasis
- Other complications follow:
 - Hypoxemia
 - Hemoptysis, pneumothorax
 - Chronic hypoxemia and pulmonary vasoconstriction
 - Pulmonary hypertension and right ventricular hypertrophy (cor pulmonale)
- Respiratory insufficiency eventually leads to death

Lung infections

Pseudomonas aeruginosa (Pa) is associated with poor outcomes

- Acquisition is associated with
 - Proinflammatory response
 - Lower lung function
 - Increased cost of care
 - Decreased survival
- Biofilm protects from host defenses and antibiotics

Eradication of Pa

- 72-90% of eradication attempts are successful
- Pa recurs in ~33% within 18–27 months
- Pa recurrence is associated with the risk of IV-treated pulmonary exacerbations
- No clear evidence for treatment of Pa recurrence

MEDICATIONS AND THEIR IMPACT ON DISEASE PROGRESSION

Extrapolating Relative Benefit

Improvement in FEV₁ vs. Slowing the Rate of Decline

Change in FEV₁ % predicted with dornase alfa

Dornase alfa slows the decline of FEV₁

Annualized Rate of Decline of FEV₁ % predicted

Median Predicted Survival Age

Median Predicted Survival Age, 1986–2017 In Five Year Increments

Advances in survival in the US and in CF care

Chronic Medication Guidelines (≥6 y/o)

Strongly Recommend		Recommend		Case-by- Case basis	Recommend against	Insufficient evidence
INH tobramycin		INH tobramycin		AZM (no Pa)	Inhaled steroids	Other INH ABX
Dornase alfa	Mod- severe	Dornase alfa	In mild disease		Oral steroids	Leukotriene modifiers
INH aztreonam	disease	INH aztreonam			Prophylactic anti- Staph antibiotics	Chronic anti-Staph antibiotics
Ivacaftor		Hypertonic saline				PO or INH N- acetylcysteine
		AZM (with <i>Pa</i>)				PO or INH glutathione
		Ibuprofen (<18 y/o)				Ibuprofen (>18 y/o)
						β-agonists
10						INH anticholinergics

Question 3: Which of the following reduces pulmonary exacerbations in infants and toddlers with CF?

- A. Hypertonic saline
- B. Dornase alpha
- C. Ivacaftor
- D. Azithromycin
- E. Inhaled tobramycin

Question 3: Which of the following reduces pulmonary exacerbations in infants and toddlers with CF?

D. Azithromycin

Decreased risk of pulmonary exacerbations

Participants	Hazard ratio	95% CI
Overall	0.6	0.4, 0.8
6 months – 3 years	0.4	0.2, 0.7
>3-6 years	0.6	0.3, 1.5
>6-12 years	0.8	0.4, 1.8
>12-18 years	0.6	0.2, 1.8

Pulmonary exacerbations

Marked by changes in

- Cough
- Sputum production
- Weight
- Physical exam
- Energy level
- Appetite
- Lung function

Treatment

- Antibiotics
- Chest physiotherapy
- Attention to nutrition

Associated with

- Poor quality of life
- Lower FEV₁
- Higher healthcare costs
- Mortality

Pulmonary exacerbation frequency

~33% of patients are treated annually with IV antibiotics for an exacerbation

Outcomes after pulmonary exacerbation treatment

- Poor improvement in spirometry
- Prolonged courses of IV antibiotics
- Accelerated decline in pulmonary function
- Re-treatment

Treatment decisions are associated with FEV₁ recovery

- Response to ≥10% acute decline in FEV₁
- 64% of acute declines in FEV₁ were treated

When all else fails: Lung Transplant

Who to refer

- Psychosocial stability
- Demonstrated adherence to therapy
- Trading one disease for another

When to refer

• FEV₁ vs clinical status

Lung transplantation and survival

- ~250 people with CF receive lung transplantation annually
 - 9% in pediatric patients
- Median survival = 6.6 years with $FEV_1 < 30\%$ predicted without a lung transplant
 - Risk factors: oxygen, frequent pulmonary exacerbations, FEV₁, pulmonary hypertension, abnormal 6 minute walk test, massive hemoptysis, recurrent pneumothorax
- Median survival following lung transplant:
 - Adults = 9.5 years
 - Pediatrics = 5.4 years

Lung Transplantation

2017 Status of Lung Transplant Recipients by Year of Transplant, 1997–2016

CFTR MODULATORS

Modulator therapy

- Potentiators
 - Increases the open probability of the CFTR chloride channel
- Correctors
 - Helps misshaped CFTR to fold into the correct 3-D conformation
- Amplifiers
 - Increase the amount of CFTR protein produced
- Stabilizers
 - Decreases CFTR protein channel turnover at the cell surface

Ivacaftor in People with CF and G551D

CFTR Modulators and slowing of FEV₁ decline

Question 4: What is the mechanism of action of "triple combination" CFTR modulators?

- A. Potentiator/Potentiator/Corrector
- B. Potentiator/Corrector/Amplifier
- C. Potentiator/Corrector/Corrector
- D. Potentiator/Corrector/Stabilizer
- E. Potentiator/Corrector/Read through suppressor

Question 4: What is the mechanism of action of "triple combination" CFTR modulators?

C. Potentiator/Corrector/Corrector

Triple-combination therapy phase 3 clinical trials

- People with CF ≥12 years of age treated with elexacaftortezacaftor-ivacaftor
- 113 patients with 2 F508del mutations
 - → 10% increase in FEV₁ vs tezacaftor/ivacaftor alone
- 403 patients with 1 F508del mutation + 1 minimal function
 - $\rightarrow 14\%$ increase in FEV₁ vs placebo
 - \rightarrow 63% decrease in rate of pulmonary exacerbations

Goal is to restore CFTR function in all people with CF

OTHER DISEASE FEATURES

Organ Dysfunction in CF

<u>Liver</u> Focal cirrhosis

Intestine
Meconium ileus
Constipation
DIOS

<u>Vas deferens</u> Failure to develop

<u>Pancreas</u>

Exocrine insufficiency CF Related Diabetes

Respiratory
Sinusitis
Nasal polyps
Endobronchitis
bronchiectasis

Sweat gland
Salt-losing dehydration

Meconium ileus and DIOS

- Meconium ileus
 - ~15% of infants with CF
 - Inspissated fecal material and mucus, mostly in the small bowel
- Distal intestinal obstruction syndrome (DIOS)
 - Annual prevalence of 2-3%
 - Thick intestinal secretions, malabsorption, and decreased gut motility

Pancreatic insufficiency

- ~85-90% of patients with CF, usually within the first year of life
- Signs and symptoms
 - Large and greasy stools, flatulence, abdominal bloating
 - Poor weight gain and malnutrition
- Leads to vitamin (A, D, E, and K) deficiencies
 - Acrodermatitis, anemia, neuropathy, night blindness, osteoporosis, and bleeding disorders

Diagnosing pancreatic insufficiency

- 72 hour stool collections for fat absorption determination
- Recommended laboratory test is fecal elastase
 - Levels < 100 µg/g stool have an excellent predictive value
 - Enzyme replacement recommended for levels <200 μg/g stool

Pancreatic enzyme replacement therapy

- CF Foundation guidelines
 - 500-2,500 lipase units/kg/meal, titrated based on symptoms and growth
 - Infants enrolled in BONUS: 1,880 lipase units/kg/meal
- Fibrosing colonopathy
 - Limit to <2500 lipase units/kg/meal and <10,000 units lipase/kg/day
 - Infants enrolled in BONUS: up to 12,400 lipase units/kg/day
- Supplemental fat soluble vitamins
 - A, D, E, K
- High-calorie diet
 - May be >120% of recommended intake

Nose and sinus disease

- Nasal polyposis and pansinusitis
- Associated with poor quality of life
- Polyps may indicate a sweat test for non-CF patients

http://curesinusproblems.com/chronic-sinusitis-treatment/

CF-related diabetes mellitus (CFRD)

- Insulin insufficiency/resistance leads to carb intolerance
- Different from type I or type II diabetes mellitus
 - DKA is rare
 - Do not restrict diet
- Pancreas becomes replaced by fat
 - Autodigestion of the pancreas by pancreatic enzymes
 - Islet cells eventually disappear
- A yearly oral glucose tolerance test for ≥10 years of age

Prevalence of CFRD

CF osteoporosis

- Common in CF
- Secondary to vitamin D deficiency, medications
- Vertebral and rib fractures are increasingly being seen as more CF patients survive into adulthood

The Internet Journal of Spine Surgery 2007 : Volume 3 Number 1

Prevalence of Depression and Anxiety

CF reproductive abnormalities

- Virtually all males with classic CF are infertile
 - Congenital bilateral absence of the vas deferens
- 1-2% of infertile men have CFTR dysfunction
 - Most men with obstructive azoospermia carry 1-2 CFTR mutations
- Most women with CF are fertile
 - Thickened cervical mucus may be present

Take home points

- Newborn screening has changed CF care
- Frequent monitoring and early detection of disease progression is key
- Inflammation and pulmonary exacerbations will still occur
- CFTR modulators and other "next-gen" therapies offer significant benefits